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Introduction to deep generative models
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Machine learning

● Focuses on predictive tasks (e.g. classifiers)
● Models p(y|x)
● It requires datasets containing labelled data

○ Labelled data is scarce and expensive 
to obtain

Model
“Dog”

Supervised learning

Build computers that can learn from data without being explicitly programmed

● Focuses on descriptive tasks
● Models p(x)
● It does not require labelled data

○ We can exploit large datasets of 
unlabelled data

Model

Unsupervised learning

Patterns
Hidden structure
Clusters
Generation
...

“Cat”

x x
y



  Marco Fraccaro                                     Deep Latent Variable Models

Generative modelling

● A branch of unsupervised learning
● Given a training dataset, the goal is to build a 

model that is able to generate data that 
comes from the data distribution p(x)
○ E.g. given a dataset of faces, we learn 

how to generate realistic new faces
● It’s not all about generating pretty pictures. 

Generative models help understand the data:
“What I cannot create, I do not understand”, 
Richard Feynman.
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The data distribution p(x)

We use the training dataset to learn a probability distribution over the data, p(x).

● In other words, we want to learn a complex probability distributions p(x) given a finite 
sample of possibly high-dimensional data points x drawn from that distribution.

Knowing this probability distribution we are interested in:

1. Sample new data points x(s)~p(x), i.e. generating from the model
2. Evaluate p(x) for a test data point
3. Extract a latent representation of the data

Note: for most complex classes of models some of these procedures will be impossible, or will 
be only possible making approximations
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Generative models considered in this presentation

There are lots of different kinds of generative models, we only focus on the ones that are
1. Flexible, i.e. can model a wide range of data distributions -> deep neural networks
2. Scalable, so that training that can exploit large unlabelled datasets -> SGD on GPUs 
3. “Easy” to implement -> deep learning libraries
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Applications: generation of images, speech, music, text
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Applications: neural machine translation

Conditional generative model: p(target language|source language)

“Il gatto e’ sul 
tavolo”

xita

“The cat is on 
the table”

xeng

p(xeng|xita)

Example:
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Applications: semi-supervised learning
Example: latent space of MNIST learned 
in a an unsupervised way shows 
well-defined class-specific clustersIn many applications (e.g. healthcare) having unlabelled 

data is easy, but labelled data is rare or expensive to 
obtain
● Can we leverage the unlabelled data to improve the 

performance of supervised methods? 
● Idea: use unlabelled data to learn a “good” 

low-dimensional latent representation of the data, 
over which we construct a much simpler classifier
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Reinforcement learning: building agents that take actions in an 
environment to maximize a reward.

Generative models can be used as simulators for model-based 
reinforcement learning (e.g. for planning)

We need generative models that can
● build a model of the world in an unsupervised way
● coherently predicting hundreds of time steps in the future
● Imagine the evolution of the world given a sequence of 

action

Applications: model-based reinforcement learning 
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Applications: anomaly detection
● Real world data contains lot of outliers/anomalies
● Since we know how to evaluate p(x) for a test data point we can perform unsupervised 

anomaly detection via density estimation
○ We consider anomalies points whose p(x) is below a certain threshold
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Taxonomy of generative models

Generative models

Likelihood-based Likelihood-free

Latent variable models 
(e.g. VAE)

Autoregressive models 
(e.g. PixelRNN)

Normalizing flows 
(e.g. GLOW)

Generative Adversarial 
Networks (GANs)

Do not use p(x) during 
training
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Likelihood-based generative models
Normalizing flows
Main idea: we can model 
complex probability distributions 
starting from a simple 
distribution and applying a series 
of invertible transformations to it.

[Image source: “Normalizing Flows in 100 Lines of JAX” 
by Eric Jang]

Autoregressive models
M￼￼ain idea: build a model 
which predicts future values 
from past ones.

[Image source: “Pixel RNNs” by van den Oord et al., 2016]

Latent variable models
Main idea: introduce a 
low-dimensional latent variable z 
that models hidden causes in 
the data-generating process.

[Image source: Scikit learn docs for Manifold learning 
with PCA]

z1

z2
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Likelihood-free generative models
Generative adversarial networks
Main idea: adversarial game in which a generator tries to generate realistic data points that can fool a 
discriminator.

[Image source: “Generative Adversarial Networks - Explained” by Rohith Gandhi]
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DISCLAIMER: do not fully trust this slide, take it only as a very high level overview!!!
● Summing up all the differences and subtleties of these complex models in one slide is impossible
● There is lots of research focusing on building variants of these models that make all these cells “greener”
● There is lots of research focusing on combining the advantages of different classes of models

There is no clear winner, which model to use depends on the application and on personal preferences/religion

Comparison of generative models

Expressivity Sampling Evaluating p(x) Extracting latent 
representation 

LVM (VAE) Approximated Approximated

Flow-based Invertible transformations

Autoregressive Slow No

GAN No No
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Latent variable models
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Latent variable models (LVMs)
To model a data point x we can introduce a latent variable z, that expresses hidden causes in the 
data-generating process.
- z is unobserved, but we can learn it from data.
- z is typically lower dimensional than x, i.e. it captures a lower dimensional representation of the 
data

Example 1. Linear LVMs: Mixture of Gaussians, principal component analysis (PCA) 
Example 2. Non-linear LVMs: VAEs

gender, 
skin color, 
hair style, 

expression
...

z x
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1. We define a prior distribution over the latent variables, p𝜃(z).
2. We define a conditional distribution p𝜃(x|z) for the data, also known as likelihood.
3. The generative model is defined in terms of a joint probability density:

 p𝜃(x,z) = p𝜃(x|z)p𝜃(z)

𝜃 collects all the model parameters, and will be learned from data.

Generation: to generate a data point we first get a sample z(s) from p𝜃(z), and then get 
a sample x(s) from p𝜃(x|z(s)).

Latent variable models
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Marginal likelihood

p𝜃(x) can be obtained from the joint distribution by integrating over the latent 
variables (assuming that z is continuous):

p𝜃(x) = ∫p𝜃(x,z) dz = ∫p𝜃(x|z)p𝜃(z)dz

The latent variable in the model allows us to express the complex marginal distribution 
p𝜃(x) in terms of a more tractable joint distribution, whose components p(x|z) and p(z) 
are typically much simpler to define (e.g using exponential family distributions).

The integral in p𝜃(x) is often intractable, and will need to be approximated.
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Posterior distribution

Given a data point x, how do we infer its latent variables z? Bayes’ rule!

p𝜃(z|x) = 
p𝜃(x)

p𝜃(x|z)p𝜃(z)

Due to the intractable integral in p𝜃(x), the posterior p𝜃(z|x) is also often intractable
● A lot of the research in probabilistic modelling focuses on effective ways to 

approximate this posterior distribution

z x
?
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Approximate (posterior) inference
Sampling techniques

- sample-based approximation to the 
posterior distribution

- slow but asymptotically exact
- e.g. Markov Chain Monte Carlo 

(MCMC), SMC, ..

[Bishop’s PRML book]

Deterministic approximation techniques

- we assume the posterior comes from a 
simpler family of distribution

- faster but not asymptotically exact
- e.g. Variational inference (VI), EP, ..

Variational inference KL(p|q) Variational inference KL(q|p)



Marco Fraccaro                                    Deep Latent Variable Models

Variational inference
● Variational inference uses the calculus of variations to find the posterior approximation 

q(z) that minimizes the Kullback–Leibler (KL) divergence between q(z) and the true 
posterior p(z|x), i.e. a measure of dissimilarity between the two distributions

● We assume the posterior comes from a simple parametric family of distribution (e.g. 
Gaussian), or make some factorization assumptions

● We cast a complex inference procedure to a simpler optimization problem.

KL(q|p): first local minimum KL(q|p): second local minimum

Important properties of the KL divergence:
1. KL ≥ 0
2. KL = 0 if and only if q(z)=p(z|x)
3. KL[q||p] ≠ KL[p||q], so it is not a 

distance in the mathematical sense
[Bishop’s PRML book]
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Posterior inference
The KL divergence is still not tractable, as the intractable posterior appears at the numerator inside the 
logarithm. However we can rewrite it as

𝓕(q) is the Evidence Lower BOund (ELBO):
1. Due to the non-negativity of the KL divergence, the ELBO represents a lower bound to the 

evidence log p(x) for any q, i.e. log p(x) ≥ 𝓕(q)
2. The closer the ELBO is to the marginal likelihood log p(x), the closer (in KL sense) the variational 

approximation will be to the posterior distribution
3. To minimize the KL we can just maximize the ELBO with respect to the distribution q(z)

a. all the terms in the ELBO are tractable/simple to approximate
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Parameter learning (1)
Very often, the parameters 𝜃 of the generative model are unknown

● Apart from being able to perform posterior inference, we also need to learn the 
parameters 𝜃. Given a training set with N data points we can use Maximum Likelihood 
Estimation:

While we have a different latent 
variable zi for each data point, the 
parameters 𝜃 are shared across all 
data pointsx1, …, xN
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Parameter learning (2)
● As we have seen, p𝜃(x) is intractable but we can approximate it with the ELBO
● To learn the parameters of the model, instead of maximizing the log-likelihood we maximize 

the total ELBO with respect to 𝜃 and q(z)

Re-derivation of the ELBO (commonly used in VAE literature):

Jensen’s inequality, 
using concavity of the 
logarithm
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The Expectation-Maximization (EM) algorithm

● A two-stage iterative optimization method for MLE of the parameters of a model with 
latent variables.
○ Generalization of the EM algorithm, commonly presented for mixture of Gaussians 

(which is a LVM!)
○ For many models, each of these step will be simpler than updating both q(z) and θ 

at the same time (for VAEs however we can easily perform joint maximization)
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Variational autoencoders
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Variational autoencoders (VAEs)

Deep learning

Probabilistic 
modelling

VAE
VAEs combine the advantages of 2 popular 
research areas:
1. Deep Learning: expressive function 
approximators, scalable end-to-end training
2. Probabilistic modelling: model uncertainty, 
more interpretable structure

VAEs are latent variable models in which we use deep neural networks to parameterize 
flexible probability distributions (=”Deep LVMs”)
● Flexible: can be used in many different applications, no manual feature engineering
● Scalable training with Variational Inference
● Similar ideas can be applied in many other domains (e.g. sequential data)

[Kingma and Welling, 2014; Rezende et al., 2014]
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Generative model of a VAE

● z is a continuous latent variable. Its prior is typically an 
isotropic multivariate Gaussian p𝜃(z)=N(z; 0, I)

● p𝜃(x|z) is the likelihood or decoder 
○ For continuous data it is typically a Gaussian distribution 

parameterized by two deep neural networks

p𝜃(x|z) = N(x;𝛍, v)     with   𝛍 = NN1(z),    log v = NN2(z)  

○ For binary data it is usually a Bernoulli distribution
● 𝜃 are the weights and biases of NN1 and NN2

p𝜃(x,z) = p𝜃(x|z)p𝜃(z)
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Approximate inference in VAEs

Due to the non-linearities in the neural networks, the marginal likelihood p𝜃(x) and 
the posterior distribution p𝜃(z|x) are intractable.

For large data sets of high-dimensional data, variational inference provides a good 
trade-off between quality of the approximation and scalability of the inference 
procedure.

● Using amortized variational inference, not the “traditional” way of doing 
variational inference
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Traditional variational inference
Common assumption: posterior comes from a simple parametric family of distribution, with a 
different set of parameters for each data point. To make this explicit we write q(z) as q𝝓i(z

i) with 
𝝓i the parameters relative to data point xi. For a Gaussian variational approximation N(zi; mi,si):

m1
s1

x1

ELBO optimization

m2
s2

x2

ELBO optimization

𝝓1=[m1,s1]

𝝓2=[m2,s2]

Problems:

1. Linear scaling of the parameters of the variational approximation with the number of data points in 
the data sets: problem in large data sets that may contain millions of elements :(

2. When a new data point arrives, we need to optimize the ELBO to obtain 𝝓i
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Amortized variational inference in VAEs
● Instead of having a different set of parameters 𝝓i to learn for each data point, we share the variational 

parameters 𝝓 across all data points (we have therefore dropped the i subscript in the notation)
● We use deep neural networks that take the data point xi as input, and output the mean and diagonal 

covariance matrix of the corresponding Gaussian variational approximation q𝝓(z
i|xi), which is also known 

as inference network or encoder

x1

m2
s2

x2

𝝓 shared 
across all 
data points

      NN𝝓

Solutions:

1. Cost of learning the variational parameters is amortised across all data points
2. When a previously unseen data point arrives we can immediately compute its variational 

approximation without the need to run an expensive optimization of the ELBO

TRADEOFF: the posterior approximation found with amortised inference will always be worse than the one 
found with the traditional approach

m1
s1
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Auto-encoding in VAEs

[Image source: Blog post From Autoencoder to Beta-VAE, Lilian Weng, 2018]
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Role of encoder and decoder in a VAE

[Image source: Kingma and Welling, 2017]

A VAE learns stochastic mappings between 
z-space and x-space

- A simple distribution in z-space becomes a 
complicated one in x-space
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Parameter learning with the ELBO
● The variational approximation depends on 𝝓, therefore 𝓕(𝜃,q) -> 𝓕(𝜃,𝝓)
● Since both generative model and variational approximation are defined using deep neural 

networks we can use backpropagation to optimize the ELBO with gradient ascent 
algorithms (see caveat in next slide)

● 𝜃 and 𝝓 can be learned jointly (unlike EM)

Reconstruction term: encourages the model to be able to reconstruct the data accurately
Regularization term: penalizes posterior approximations that are too far from the prior
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Reparameterization trick

[Source: Kingma's NIPS 2015 workshop slides]

Issue. we need to 
back-propagate through a 
stochastic node.

Solution. Reparameterization 
trick: write z as a deterministic 
transformation of a simpler 
random variable, so that all the 
parameters are in the 
“deterministic part” of the 
graph. 

In a VAE q𝝓(z|x)=N(z; m,s) can 
be rewritten as:
z=g(𝝓,x,ε)=m+s⊙ε with 
p(ε)=N(ε; 0, I)
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MNIST implementation in PyTorch

[Source: https://github.com/pytorch/examples/blob/master/vae/main.py]
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MNIST results
Simple model with 2-dimensional latent variables first four digits MNIST digits (for visualization purposes)
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VAE exercises

VAE exercises from DTU’s course: 02456 Deep learning

Tensorflow: https://bit.ly/2MPatyh

PyTorch: https://bit.ly/31pdEAI 

https://bit.ly/2MPatyh
https://bit.ly/31pdEAI
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Advanced topics in VAE research
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Main VAE research directions

1. Better models: build more powerful models e.g.
a. adding a hierarchy of latent variables (Rezende et al., 2014; Sønderby et al., 2016, Maaløe et al., 2019)

b. more powerful decoders based on autoregressive/flow-based models (Gulrajani et al., 2016; Chen et al., 2017)

c. using discrete latent variables (Jang et al., 2017, Maddison et al., 2017)

2. Better posterior approximations: define more expressive posterior distributions e.g.
a. using normalizing flows (Rezende and Mohamed, 2015; Kingma et al., 2016)

b. using auxiliary variables (Ranganath et al., 2015; Maaløe et al., 2016)

3. Different objective function: e.g.
a. tighter ELBO approximations (Burda et al., 2015)

b. use other divergence measures (Li and Turner, 2016)

4. Applications: e.g.
a. semi-supervised learning (Kingma et al., 2014; Maaløe et al., 2016)

b. anomaly detection (Maaløe et al., 2019)

c. learning disentangled representations (Higgins et al., 2017)
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Ladder VAE (LVAE)

[Sønderby et al., 2016] [Image source: Maaløe et al., 2019]

Adding a hierarchy of latent variables in the generative model (Figure 
2a) allows us to model very complex data distributions. 

Inference is however harder:
● A bottom-up inference model as in Figure 2b has issues in 

activating the higher stochastic units
● The LVAE adds a bottom-up deterministic path followed by a 

top-down stochastic inference path
○ This forces the model to learn to exploit all variables in 

the hierarchy
● Training tricks: batch-norm, KL warm up
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LVAE results
Inactive units MNIST latent space
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Bidirectional-Inference Variational Autoencoder (BIVA)
In practice, LVAE cannot handle very deep LVMs. To solve this, BIVA extends the LVAE in 2 ways:
1. Skip-connected generative model using a deterministic top-down path (Figure a), which allows a better 

flow of information in the model and to avoid the collapse of latent variables in very deep models
2. Bidirectional inference using a stochastic bottom-up and top-down paths that form a very flexible 

variational approximation (without introducing auxiliary variables)
Doing this, BIVA can use a very deep hierarchy of latent variables (up to 20 layers of stochastic variables)

[Maaløe L., Fraccaro M., Liévin V., Winther O. “BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling”.]
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BIVA results
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Variational inference with normalizing flows
We can form a complex variational approximation by starting from a simple density and constructing a chain 
of R learnable parametric transformations 𝑓r, known as normalizing flows, that expand and contract the initial 
density:

The resulting probability density over the variable zR can be computed 
by repeatedly applying the rule for change of variables, giving

[Rezende and Mohamed, 2015]

Requirements for the flow:
● The input and output dimensions must be the same.
● The transformation 𝑓r must be invertible.
● Efficient computation of the determinant of the Jacobian and its gradient.
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Complex posteriors with normalizing flows 

[Rezende and Mohamed, 2015]

We define an inference network using a parametric flow family (e.g. planar or radial flows as below), and 
learn the parameters of the flow.
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Semi-supervised learning with VAEs
● Define a generative model that describes the data as being generated by a latent class 

variable y in addition to a continuous latent variable z.
● The class labels y are treated as latent variables for unlabelled data
● The inference network over y can be used as a classifier

[Kingma et al., 2014]
[Image source: Kingma's NIPS 2015 workshop slides]
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Extending VAEs to sequential data
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Sequential data
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Goal

Introduce a general class of models for unsupervised learning of sequential data:
● Can model a wide range of complex temporal data
● Can be trained in a scalable way using large unlabelled datasets

We do it by combining ideas from deep learning and probabilistic modelling
○ Flexible models inspired by Variational autoencoders
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State-space models

“Apollo 11, this is Houston.. we have 
a state vector update for you.”

Transcription from the Apollo 11 mission

● The main building block of the more advanced models discussed later
● We can see it as the sequential extension of latent variable models

○ The prior changes over time
● Introduced at NASA in the early 1960s to estimate the trajectory of the spacecrafts
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Trajectory estimation from noisy measurements

We define state-space models using an example:

● We want to track the movement of a flying ball

○ We want to estimate the true trajectory 
(blue dashed line)

○ We can only observe the noisy (x, y) 
positions (black dots)

● Simplified version of what is done in global 
positioning systems (GPS)
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Parabolic motion of a ball thrown in vacuum

Newton’s equations for parabolic motion:

We can exploit our knowledge of the physics of the moving ball

uniform 
motion

uniformly 
accelerated 
motion

summarizes the state of the system at 
each time step (positions and velocities)
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Transition equation of a state-space model

Transition matrix Control matrix Action/control

Transition equation: specifies the evolution of the system in time. 
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Emission equation of a state-space model

We do not observe the state      , but the noisy position       .

Emission equation: from state to 
noisy position

Emission matrix

Measurement 
noise (Gaussian)

Noisy 
observation

State

latent 
position
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Linear Gaussian State-Space Models (LGSSM)
x1

u1

z1

x2

u2

z2

u3

z3

x3Observations

Latent state

Actions

● Transition equation:

● Emission equation:
   

From a probabilistic point of view:
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Posterior inference (filtering)

● Our original goal was to estimate the 
trajectory from the noisy measurements

● We need to estimate the state given the 
data we have observed so far:

● In a LGSSM we can compute this filtered 
posterior distribution in an exact way (!!!) 
with the Kalman filtering algorithm
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Kalman filtering

https://docs.google.com/file/d/1AAbtD4EG8vweQy59Sb8La-UxCgMPc37K/preview
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Posterior inference (smoothing)
Once we have observed the whole trajectory we can further refine the estimated trajectory at 
each time step using information from the future observations as well.

● In a LGSSM we can compute the 
smoothed posterior distribution in an 
exact way:
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Predictions

k-steps ahead prediction:
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Missing data imputation
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Summary - Linear Gaussian state-space models

● Exact filtering, smoothing and missing data imputation
● Generalizes many common time-series models (e.g. ARIMA)

● Strong modelling assumptions:
○ Linear transitions and emissions
○ Gaussian transitions and measurement noise

We need to 
relax them!
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Unsupervised learning from videos

● We want to learn a generative model for 
these videos in an unsupervised way 

● Much harder task that before:
○ Observations are 1024-dimensional 

vectors (32x32 images)
○ Non-linear transitions due to the walls
○ We want to learn ALL parameters 

from data

https://docs.google.com/file/d/1ZbGvEZOfbJ3OCH8OZ7dp45OkYGy2hZZd/preview
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Predicting the ball’s path from sensory input

How do humans do it?

1. We know what a ball looks like, and can easily 
identify its position in the frames of the video

2. We have a great intuition of Newtonian dynamics 

a. We can easily predict where the ball will go

3. When the ball bounces, we know exactly how the 
trajectory will change

How can a mathematical model do it?

1. From pixel space to a 2-dimensional latent 
variable representing the noisy positions

2. Given the latent noisy positions we can use a 
LGSSM

a. LGSSM can be used to make 
predictions

3. The model needs to learn when the ball will 
bounce and how this will change its state 
vector
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t = 1 t = 2 t = 3
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a1,2

a1,1

a1 = (a1,1, a1,2) a2 = (a2,1, a2,2) a3 = (a3,1, a3,2) 

t = 1 t = 2 t = 3

a2,1

a2,2

a3,2

a3,1
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Variational Auto-Encoder (VAE)

q(a|x) p(x|a)a1

a2

x x
a

We use a VAE to go from pixel space to a 2-dimensional latent variable representing the noisy positions.
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Kalman Variational Auto-Encoders

Variational Auto-Encoder

x1

u1

z1

a1

x2

u2

z2

a2

x3

u3

z3

a3

Linear Gaussian state-space models

Generative model:

[Fraccaro* M., Kamronn* S., Paquet U., Winther O. A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning. NIPS 2017.]
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Inference and parameter learning for the KVAE
1. We approximate the intractable posterior                        introducing a variational 

distribution that factorizes as follows:

Here we leverage our knowledge of the exact smoothed posterior for the LGSSM.

2. We use Jensen’s inequality and the variational approximation to define a lower bound 
to the intractable log-likelihood of a training set, 

3. The parameters of the model and the variational approximation can be found by jointly 
maximizing the lower bound with stochastic gradient ascent
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Non-linear transitions

t = 1 t = 2 t = 3

A¹

A¹
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Non-linear transitions

t = 1 t = 2 t = 3 t = 4

Wrong prediction 
by linear model

A¹

A¹
A¹

A²
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Dynamically parameterized LGSSM

αt = RNN(a0:t-1)At = αt
1A1 + αt

2A2+ αt
3A3

Transition matrix is a weighted sum: Mixture weights as a function of a

αt
1 αt

2 αt
3
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Long-term generation

https://docs.google.com/file/d/1jFXmg8HKFXpGOZ9ZVFKq9g7e_4gn6bir/preview
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Results in different environments

Gravity Pong Polygon
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Summary - Kalman Variational Auto-Encoder

● We can model high-dimensional videos in an unsupervised way
○ Learning everything from data

● Interpretability (disentangled visual and dynamic representations)
● Does not require a lot of data

● Model is not very flexible (e.g. it cannot model speech)
○ Transition model cannot handle complex non-linear dynamics
○ Difficult to capture long-term dependencies in the data

 => Non-linear SSM
 => RNN
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Stochastic recurrent neural networks (SRNNs)

x1

u1

d1 d2

u2

x2

d3

u3

x3

d4

u4

x4

RNN

RNN captures long-term dependencies

Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet and Ole Winther. Sequential Neural Models with Stochastic Layers. NIPS 2016. 
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Stochastic recurrent neural networks (SRNNs)

x1

u1

z2z1

u2

x2

z3

u3

x3

z4

u4

x4

+

Non-linear SSM

SSM models uncertainty in the latent states

Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet and Ole Winther. Sequential Neural Models with Stochastic Layers. NIPS 2016. 
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Stochastic recurrent neural networks (SRNNs)

x1
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d1
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d3

u3

x3

z4

d4

u4

x4

=

SRNN

RNN captures long-term dependencies

SSM models uncertainty in the latent states

[Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet and Ole Winther. Sequential Neural Models with Stochastic Layers. NIPS 2016.]
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Stochastic recurrent neural networks (SRNNs)
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Deterministic transitions (GRU, LSTM, ...) 
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Stochastic recurrent neural networks (SRNNs)
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Stochastic transitions
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Stochastic recurrent neural networks (SRNNs)
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Output probabilities
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Inference and parameter learning for the SRNN
1. We approximate the intractable posterior                       introducing a 

variational distribution                       (an inference network)

2. We use Jensen’s inequality and the variational approximation to define a 
lower bound to the intractable log-likelihood of a training set, 

3. The optimal     and     can be found by jointly maximizing the lower bound
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Posterior distribution
Due to the deterministic nature of the RNN layer the posterior factorizes as

Prior RNN transition probabilities: Smoothed posterior over the states of the SSM:
                   is intractable, but it can be simplified 
exploiting some independence properties given 
by the temporal structure of the model.
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Variational approximation to the posterior
Using the conditional independence properties of the model we can factorize
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Variational approximation to the posterior
Using the conditional independence properties of the model we can factorize

Variational approximation:
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Variational approximation to the posterior
Using the conditional independence properties of the model we can factorize

Variational approximation:

The inference network       approximates the dependence of      on          and          by 
introducing auxiliary deterministic states      that belong to an RNN running backwards 
in time:
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Speech modeling results 

Two data sets of raw waveforms:

● Blizzard: 300 hours of English, spoken 
by a single female speaker. 

● TIMIT: 6300 English sentences read by 
630 speakers.

In these experiments we set                    , 
but       could also be used to represent 
additional input information to the model.
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Speech modeling results 

[1] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio. A recurrent latent variable model for sequential data. NIPS 2015

Average log-likelihood per sequence
Two data sets of raw waveforms:

● Blizzard: 300 hours of English, spoken 
by a single female speaker. 

● TIMIT: 6300 English sentences read by 
630 speakers.

In these experiments we set                    , 
but       could also be used to represent 
additional input information to the model.

SRNN VRNN[1] RNN
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Importance of the inference network
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Importance of the inference network
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Summary - Stochastic recurrent neural networks

● Flexible model, suitable to a wide range of applications
● Scalable inference thanks to the inference network

● Lots of parameters to learn, therefore we need lots of data
● Several strong assumptions are needed to ensure scalability during 

inference
● For some applications that require a high memory capacity (e.g. 

model-based reinforcement learning) the RNN is not scalable enough

We need external memory 
architectures
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Generative modelling task
We are given T-step videos with corresponding action sequences generated by an RL agent 
acting in an environment. Each video is split in two parts:

An agent walks and observes an 
environment for hundreds of 

time steps0 𝛕 T
time

We ask the agent to predict 
subsequent observations given 

a sequence of actions

Memorization phase Prediction phase

Model needs to be able to
● Remember the past over hundreds of time steps:

○ What the agent has seen
○ Where the agent has seen it

● Predict how a possibly long sequence of actions changes the position of the agent
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Generative Temporal Model with Spatial Memory (GTM-SM)
We introduce an action-conditioned generative models that uses:
● State-space model: learns how to infer the position (state) of the agent given a 

sequence of actions, using knowledge on the prior dynamics of the moving agent
● VAE: learns how to encode the frames into a low-dimensional vector
● Differentiable Neural Dictionary (DND): memory that stores the information 

collected while exploring the environment

Model stores the inferred 
position/visual information in the 
DND memory0 𝛕 T

time

Model infers the new positions and 
predicts the future observations 
using the information stored in the 
DND memory

Memorization phase Prediction phase

[Marco Fraccaro, Danilo Rezende, Yori Zwols, Alexander Pritzel, S. M. Ali Eslami and Fabio Viola. Generative Temporal Models with Spatial Memory 
for Partially Observed Environments, ICML 2018.]
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Differentiable Neural Dictionaries (DND)

Writing Reading
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Retrieved 
values
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Memorization 
phase

Prediction 
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Generative model
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Generative model

xt-1

at-1

st-1
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SSM

● We use a state-space model (SSM) to model 
the dynamics of the agent:
○ Transition density: 
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Generative model
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VAE

● At each time step we have a VAE that 
models the observed frames
○ Likelihood:

○ Inference network:

○ Conditional prior:
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Generative model
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Inference and parameter learning for the GTM-SM 
1. We approximate the intractable posterior introducing a variational 

distribution (an inference network):

2. We use Jensen’s inequality and the variational approximation to define a 
lower bound to the intractable log-likelihood of a training set, 

3. The optimal     and     can be found by jointly maximizing the lower bound
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Image navigation experiment

● Agent walks on top of an image
○ It can only observe an 8x8 crop of the image 

(yellow square)
● Long sequences:

○ We walk in the image while adding information in 
the DND for 256 time steps

○ We then generate for 256 time steps
● The environment has walls

○ We need non-linear transitions
● We use a 2-dimensional state space

○ Model learns to represent the position of the agent
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Long-term generation (Image Navigation experiment)

https://docs.google.com/file/d/1xSzaKi7dUnacCdTW38C4FE-LgpCnGYcf/preview
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Walking agent in Labyrinth

● Action-conditioned videos of an agent walking in an 3D 
environment with a single room

● We only store in memory the views from the first 150 time steps, 
then ask the agent to generate the following 150 time steps

● Observation model needs to combine information from different 
views
○ We use a Generative Query Network

● We use a 3-dimensional state-space
○ Model learns to represent the position and orientation of the 

agent
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Long-term generation (Walking agent in Labyrinth)

https://docs.google.com/file/d/1-GIUGFHquREIAbIMGrkPXxSk2sfIS3E6/preview
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Summary - Generative Temporal Models with Spatial Memory

● The state-space assumption and the DND memory allow us to 
make coherent predictions over longer time scales
○ This can be used for planning in model-based reinforcement 

learning
○ In a scalable way

● The physics of the environment need to be known relatively well
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Conclusions

Deep Latent Variable Models:
● Flexible

○ Can fit complex data distributions in a wide range of applications
○ Can easily incorporate advances in deep learning architectures

● Scalable: suitable for large-scale learning
○ Amortized Variational inference (inference networks)
○ GPU acceleration

● “Easy” to implement
○ Using existing deep learning libraries
○ Inference can be seen as a black-box operation (stochastic gradient descent)


