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Abstract

We investigate multiarmed bandits with delayed feedback, where the delays need neither be identical nor bounded.
We prove three results:

1. The ”delayed” version of the standard algorithm Exp3 achieves the O
(√

(KT + D) lnK
)

regret bound con-
jectured by Cesa-Bianchi et al. [2016], for variable, but bounded delays. Here K is the number of actions and
D is the total delay over T rounds.

2. We introduce a new algorithm that skips feedback with excessively large delays. This algorithm maintains
the same regret bound but also for unrestricted delays. Tuning requires prior knowledge of T and D.

3. For our new algorithm we then construct a novel doubling scheme that takes care of the tuning under the
assumption that the delays are available at action time (rather than at loss observation time). The resulting
oracle regret bound is of order minβ

(
|Sβ|+β lnK+(KT +Dβ)/β

)
, where |Sβ| is the number of observations

with delay exceeding β, and Dβ is the total delay of observations with delay below β. This relaxes to the
conjectured bound but can be polynomially better of which we provide an example.

Setting

Multiarmed Bandits models sequential decision processes as a
repeated game, where a learner in each round chooses an action
At out of K possible actions. The associated loss `Att ∈ [0, 1] is
suffered by the learner. Normally `Att is revealed as feedback to the
learner immediately, but we consider a delayed variant, where it
arrives dt timesteps later at the end of round t + dt.

The performance of the learner is measured by the expected regret
of the actions of the learner over T rounds, compared to the best
action in hindsight:

R̄T := E

[
T∑
t=1

`Att

]
− min

a∈[K]

T∑
t=1

`at . (1)

Since only the loss of the chosen action At is revealed to the learner,
this setting displays a tradeoff between exploration and exploita-
tion.

Part 1: Delayed Exp3

Our first result concerns the standard Exp3 algorithm
utilising exponential weights with importance weighted
loss estimators. Our variant updates as the delayed
feedback becomes available and truncates the learning
rate η, such that the probabilities are stable over the
stability-spans Nt = |{s : s + ds ∈ [t, t + dt)}|.

Algorithm 1: Delayed exponential weights (DEW)

Input: Learning rate η; Upper bound on
stability-spans N ≥ Nt ∀t.

Truncate the learning rate: η′ = min{η, (2eN)−1};
Initialize wa

0 = 1 for all a ∈ [K];
for t = 1, 2, . . . do

Let pat =
wat−1∑
bw

b
t−1

for a ∈ [K];

Draw an action At ∈ [K] according to the
distribution pt and play it;

Observe feedback (s, `Ass ) for all {s : s + ds = t}
and construct estimators ˆ̀a

s = `as1(a=As)
pas

;

Update wa
t = wa

t−1 exp
(
−η′

∑
s:s+ds=t

ˆ̀a
s

)
;

end

Regret Bounds for Delayed Exp3

For Algorithm 1 we prove the following result, answering
an open problem of Cesa-Bianchi et al. [2016]:

Theorem 1 Under the assumption that an upper
bound N ≥ maxtNt on the stability-spans is known,
the regret of Algorithm 1 with a learning rate η
against an oblivious adversary satisfies

R̄T ≤ max

{
lnK

η
, 2eN lnK

}
+ η

(
KTe

2
+ D

)
,

where D =
∑T

t=1 dt. In particular, if T and D are

known and η =
√

lnK
KTe

2 +D
≤ 1

2eN , we have

R̄T ≤ O
(√

(KT + D) lnK
)
.

This result generalises the case of the fixed delay con-
sidered in Cesa-Bianchi et al. [2016]. In that paper a
lower bound is further considered, which also applies as
a worst case scaling for our algorithm:

Theorem 2 [Cesa-Bianchi et al., 2016] For a fixed
delay dt = d such that D = dT the worst case regret
is of order

Ω
(√

KT + D lnK
)
.

Part 2: Skipping Large Delays

Theorem 1 only obtains the desired regret scaling when
the stability-spans are bounded compared to the learning
rate. We remedy this by introducing a wrapper algorithm
that disregards feedback from rounds with too large of a
delay, tuned by a threshold β:

Algorithm 2: Skipper
Input: Threshold β; Algorithm A.

for t = 1, 2, . . . do
Get prediction At from A and play it;
Observe feedback (s, `Ass ) for all {s : s + ds = t}, and
feed it to A for each s with ds < β;

end

The point of wrapping DEW with Skipper is that we only
have a unit cost of skipping a round, since the loss in each
skipped round is bounded by 1.
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Fig. 1: Illustration of Skipper and a delay threshold β = 150. Skipping incurs a

cost |Sβ| = 7 while the maximal stability-span is lowered by an order of magnitude.

Regret Bounds for Skipper

The unit cost of skipping a round might be much smaller
than the penalty of requiring stability over a large period,
giving us the combined regret bound which hold for any
stability-spans:

Theorem 3 The expected regret of Skipper(β,
DEW(η,2β)) against an oblivious adversary satisfies

R̄T ≤ |Sβ| + max

{
lnK

η
, 4eβ lnK

}
+ η

(
KTe

2
+ Dβ

)
,

where Dβ =
∑

t/∈Sβ dt is the cumulative delay experi-

enced by DEW.

Corollary 4 Assume that T and D are known and tune

η =
1

4eβ
, β =

√
eKT/2+D

4e + D

4e lnK
.

Then the expected regret of Skipper(β, DEW(η,2β))
against an oblivious adversary satisfies

R̄T ≤ O
(√

(KT + D) lnK
)
.

Part 3: Doubling Trick

In Part 2 we got rid of the need for the bounded
stability-spans, meaning we achieve the conjectured
regret bound for any sequence of delays. These results
still need prior knowledge of T and D in order to tune
β and η. We now loosen this requirement to knowing
dt at time t by applying a variation of the doubling trick :

We split the game into epochs indexed by m and restart
the algorithm in each epoch, allowing us to treat them as
individual games, where we control both the tuning and
the length of the game. In epoch m we set ηm ∼ 1/βm
and

βm =

√
2m

4e lnK
and we stay in epoch m as long as the following condition
holds:

max

{
|Smβm|

2,

(
eKσ(m)

2
+ Dm

βm

)
lnK

}
≤ 2m,

where σ(m) is the length of epoch m. We show
that not just does this give us the conjectured scaling
O(
√

(TK + D) lnK) without knowledge of T and D,
but we show that the doubling scheme is comparable to
the optimal choice of β over the entire game:

Theorem 5 The expected regret of Skipper(β,
DEW(η,2β)) tuned by Doubling satisfies for any T

R̄T ≤ O
(

min
β

{
|Sβ| + β lnK +

KT + Dβ

β

}
+ K lnK

)
Corollary 6 The expected regret of Skipper(β,
DEW(η,2β)) tuned by Doubling can be relaxed for any
T to

R̄T ≤ O
(√

(KT + D) lnK + K lnK
)
.

Note that the oracle bound (Theorem 5) is always as
strong as the explicit bound (Corollary 6). There are,
however, cases where it is much tighter. Consider the
following example:

Example 7 For t <
√
KT/ lnK let dt = T − t and

for t ≥
√
KT/ lnK let dt = 0. Take β =

√
KT/ lnK.

Then D = Θ(T
√
KT/ lnK), but Dβ = 0 (assuming

that T ≥ K lnK) and |Sβ| <
√
KT/ lnK. The cor-

responding regret bounds are

explicit : O
(√

KT lnK + T
√
KT

)
= O

(
T 3/4

)
,

oracle : O
(√

KT lnK
)

= O
(
T 1/2

)
.
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