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Summary

– There exists an ubundance of statistical methods

for analysing raw data residing in Euclidean space,

however, most of which does not apply when the

underlying data space is more complicated than the

standard Euclidean space.

– Some of the statistical methods relies on simulation

of Brownian bridges, which are efficient tools for sta-

tistical inference, e.g. Kolmogorov-Smirnov’s good-

ness of fit test (which quantifies a distance between

an empirical distribution function and a reference

distribution function).

– We propose a method for simulating diffusion

bridges from a to b on the flat torus over the interval

[0, T], which approximate the true Brownian bridge

from a to b over [0, T]. This is done by considering

a 2-dimensional Euclidean bridge process, which is

then projected onto the flat torus. (see Fig. 1)

The Geometrical Idea

– The geometrical intuition of the flat torus is easy to

comprehend; Take a piece of elastic paper and iden-

tify top and bottom so that it forms a cylinder, then

by stretching the cylinder the two ends can meet to

form a donut shape. This is illustrated in Fig. 1.

– Let T2 denote the 2-dimensional torus obtained by

the algebraic operation R2/Z2, i.e. we can write it

as the set

T2 =
{
(x1, x2) ∈ R2 : −1

2 ≤ xi <
1
2, i = 1, 2

}
.

– The flat torus inherits the Euclidean structure, hence

the word flat and the map π defines a canonical sur-

jection (see Fig. 1).
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Figure 1: The figure illustrates the possibility of the diffusion path going
an arbitrary number of times around the torus, starting at the black dot
and ending in the red. This is illustrated by the red path. The conditioning
on single point in T2 therefore leads to conditioning on multiple points in
R2. Left: Two paths from the same two-dimensional process with multiple
endpoints. Right: The projection of the two paths onto the torus.

– For a point b ∈ T2 (red point on the torus in Fig. 1)

the pullback π−1(b) gives a collection of points in

R2 (red points in R2 in Fig. 1). The grid G in Fig. 1

denotes the set of points where there does not exists

a unique shortest path to a point in π−1(b).

Brownian Bridges
– A standard Brownian motion W = (Wt)t≥0 is an

almost surely continuous stochastic process with in-

dependent increments satisfying

W0 = 0 a.s., Wt−Ws ∼ N(0, t− s), f or t > s.

– A Brownian bridge B = (Bt)0≤t≤T from a to b at

time T, is a conditional Brownian motion

B = W|
(
W0 = a, WT = b

)
(1)

– Following from Doob’s h-transform it can be written

as the stochastic differential equation (SDE)

dBt = ∇x log(p(t, x; T, b))
∣∣
x=Bt

dt + dWt,

where in the standard Euclidean setup, the transi-

tion density will have the form

p(s, x; t, y) =
1√

2π(t− s)
exp

(
−||x− y||2

2(t− s)

)
, s < t.

– The drift term acts as the guiding term pulling the

process towards the end point (see e.g. Fig. 2a for a

visualisation of this).

– In the particular case of the flat torus, the transition

density will be a sum over y ∈ π−1(b).

Diffusion Bridges on the Flat
Torus
– We consider the diffusion process on [0, T), for some

fixed positive T, defined by

dXt = 1Gc(Xt)
α(Xt)− Xt

T − t
dt + σdWt, X0 = x0

(2)

where σ > 0 and α is defined by

α(Xt) = arg min
y∈π−1(b)

‖y− Xt‖,

– The solution of (2) guides to the nearest point in

π−1(b) which is illustrated in Fig. 2. In particular,

the drift term is increasing as t→ T (see Fig. 2a and

Fig. 3b).

(a) Drift term (b) Vector field

Figure 2: Figure 2a depicts the evolution of the drift term. It shows how
the pull from the drift becomes stronger near the end. Figure 2b shows
the underlying vector field.

Proposition 1 There exist a strong solution of (2) on [0, T),
which is strongly unique.

Theorem 1 The law of (2) is equivalent to the law of the
true Brownian bridge on [0, T).

– Paths from the proposed model are plotted against

paths from the true Brownian bridge on the flat

torus in Fig. 4.

Numerical Implementations
– For the numerical implementation of the proposed

SDE in equation (2) we implemented the Euler-
Maruyama scheme.

– Step 1: Take n + 1 equidistant discretization points

of the time interval 0 = t0 < t1 < ... < tn = T, with

ti+1− ti = ∆t, then

∆Wti+1 = Wti+1−Wti ∼ N(0, ∆t)

where (Wt)t≥0 is a standard Brownian motion.

– Step 2: Set x0 = a ∈ R2 and define iteratively

xti+1 = xti +
α(xti)− xti

T − ti
∆t + σ∆Wti.

(a) Paths visualized on an
embedded torus.

(b) The two Euclidean paths
that are mapped onto the
torus.

Figure 3: Two different paths visualized both on the torus and in Eucliden
space. The blue dot represents the starting point and the red represents
the end point.

(a) 9 realisations of the proposed
bridge process.

(b) 9 realisations from the true
bridge process.

Figure 4: The color of the paths indicate the time evolution and the red
dots their end points, respectively.

Forthcoming Research
– We aim to extend the above results to the case of

more general manifolds e.g. spheres.
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