DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF COPENHAGEN

An Optimal Algorithm for Stochastic
and Adversarial Bandits

Julian Zimmert, Yevgeny Seldin
{zimmert, seldin}@di.ku.dk

Introduction Problem setting Online Mirror Descent
Stochastic (i.i.d.) and adversarial multi-armed bandits e At time t = 1,...,(T) the agent chooses an arm Input: (Y¢)i—12 ..
are two fundamental sequential decision making prob- Iy €{1,...,K} 1 Initialize: Ly = Ok (the zero vector of dimension K)
lems in online learning. e The environments, oblivious to the agent’s action, 2fort=1,...do A
When prior information about the nature of en- picks a loss vector ¢; € [0,1]K 3 | choose wy = V(Y + Zpk)*(—Li—1)

' (. ilable, it i ible t hi | ~
vironmen 3 1(ST) available, it is .pOSSI e to a.c ieve « The agent observes and suffers only the 10ss £/ 4 | sample I} ~ wy
O(Xia>0 gAi ) pseudo-regret in the stochastic case | | I 5 | observe /y,
and O(v/KT) pseudo-regret in the adversarial case, * The agent tries to minimize its pseudo-regret: 6 | construct ¢; = %e I

- - I
and both results match the respective lower bounds Reg,— max F XT: Iy ;| update L; = it—lt ny)
. t
up to constants. ie{l...K} |3 | s end
The challenge in recent years has been to achieve the Algorithm 1: Online Mirror Descent (OMD) for bandits
optimal regret rates without prior knowledge about Stochastically constrained adversary fw & AK
oo if w

the nature of the problem. The question of the exis- e Losses satisfy E [¢;; — ;] = A; > 0 for all times ¢ o Trx(w) = 0if w e AK

tence of a universal trade-off preventing optimality in

. . e Absolute mean E |¢;;+] can be chosen adversarially K Wt
both worlds simultaneously has remained open for a * Yi(w) = — i1 o
. . . .  Generalization of stochastic i.i.d. bandits l
while. We give a concluding answer, showing that a
very simple algorithm can be optimal.
What makes the problem so hard? Novel proof Choosing «
* The probability of playing sub-optimal arms de- We refine the standard OMD upper bound adversarial regime
. T 1—u 7 stochastic regime
pends on the loss difference L;; — L+ Roo.. < Z Z £ (W] K wy;] O(log(T))
8T L £ e O(/1og(T))
e The difference of loss estimator is in expectation .t.:“#l o8
5 [Ly — Ly ] = At We use the explicit form of the regret \ O(y/1og(K)
_ t O(1)
* Sub-optimal arms cannot be played with probability Regr =), ) AE [wy om
. t=1i£i* | | |
higher than O(—=- 0 0.5 1
5 (Azzt) And take the worst case [E |wy;| that still satisfies the
e The variance of loss estimators is then of order regret bound (self-bounding proof) Figure 1: (Upper bound)/(Lower bound) for different values of «.
Q(A?? 1- . . .
(4:%) max i Y wy "t Wy e x = 7 is superior to EXP3 (¢ = 1) and LogBarrier
|
* The signal is of the same magnitude as the standard wi,wr€AR 7 £ t—a (x = 0)
deviat; ! 4 L x . . . .
SVIaHon s.t. Z Z A;wy; < Z Z (w“ | Clu”) * Only for a = % is the learning rate identical for
b . . - . . “ _“
Concentration arguments cannot work! E=1izi* =iz \ t stochastic and adversarial environments
Empirical evaluation Application to utility-based dueling bandits
1200 | | | 10° e In dueling bandits, the agent selects two actions I;, [; every step and receives the
1000 - ) result of a “duel”.
800 |- 0 _ There are utilities u; € |0, 1]K associated with all arms and the probability of arm i
N1 oo : . . . o 1+”ti—“tj .
a) Or A winning against arm j is ———. In the stochastic case, u; = u are constant.
00 - we TR The pseudo-regret is defined as
200 - ' 554D i i
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B When using sparring, i.e. running independent algorithms to select I; and J; that
Exp3++ —h— 10° . . . . o
00 | b } receive II{[;/[;wins} as a loss, then the pseudo regret is the sum of the individual
b) 60 R < 0 regrets.

100 | In the stochastic case, the sparring problem is a stochastically constrained adver-

10° a7 7 - X

sary, hence our results for MAB apply.
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0 2500 5000 7500 10000 10* 10° 10° 107 Therefore, we achieve optimality in both worlds:

Comparison of several bandit algorithms with K = 8 and A = 1/8 under a) stochas-

. O (\/ K T) for adversarial environments
tic and b) stochastically constrained adversary regime. The left side is in linear scale Regr <

o (Zi#i* if—g)l) for stochastic environments

and the right is in log-log scale.



