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Introduction
Stochastic (i.i.d.) and adversarial multi-armed bandits

are two fundamental sequential decision making prob-

lems in online learning.

When prior information about the nature of en-

vironment is available, it is possible to achieve

O(∑i:∆i>0
log(T)

∆i
) pseudo-regret in the stochastic case

and O(
√

KT) pseudo-regret in the adversarial case,

and both results match the respective lower bounds

up to constants.

The challenge in recent years has been to achieve the

optimal regret rates without prior knowledge about

the nature of the problem. The question of the exis-

tence of a universal trade-off preventing optimality in

both worlds simultaneously has remained open for a

while. We give a concluding answer, showing that a

very simple algorithm can be optimal.

Problem setting

• At time t = 1, . . . , (T) the agent chooses an arm

It ∈ {1, . . . , K}

• The environments, oblivious to the agent’s action,

picks a loss vector `t ∈ [0, 1]K

• The agent observes and suffers only the loss `tIt

• The agent tries to minimize its pseudo-regret:

RegT = max
i∈{1,...,K}

E

[
T

∑
t=1

`tIt − `ti

]

Stochastically constrained adversary

• Losses satisfy E [`ti− `ti∗] = ∆i > 0 for all times t

• Absolute mean E [`ti∗] can be chosen adversarially

• Generalization of stochastic i.i.d. bandits

Online Mirror Descent
Input: (Ψt)t=1,2,...

1 Initialize: L̂0 = 0K (the zero vector of dimension K)

2 for t = 1, . . . do
3 choose wt = ∇(Ψt + I∆K)∗(−L̂t−1)

4 sample It ∼ wt

5 observe `tIt

6 construct ˆ̀t =
`tIt
wIt

eIt

7 update L̂t = L̂t−1 + ˆ̀t

8 end
Algorithm 1: Online Mirror Descent (OMD) for bandits

• I∆K(w) =

∞ if w 6∈ ∆K

0 if w ∈ ∆K

• Ψt(w) = −∑K
i=1

wα
i

αηti

What makes the problem so hard?

• The probability of playing sub-optimal arms de-

pends on the loss difference Lti− Lti∗

• The difference of loss estimator is in expectation

E [Lti− Lti∗] = ∆it

• Sub-optimal arms cannot be played with probability

higher than O( 1
∆2

i t
)

• The variance of loss estimators is then of order

Ω(∆2
i t2)

• The signal is of the same magnitude as the standard

deviation

Concentration arguments cannot work!

Novel proof

We refine the standard OMD upper bound

RegT ≤ �
T

∑
t=1

∑
i 6=i∗

(
E [wti]

1−α

tα
+

E [wti]
α

t1−α

)
We use the explicit form of the regret

RegT =
t

∑
t=1

∑
i 6=i∗

∆iE [wti]

And take the worst case E [wti] that still satisfies the

regret bound (self-bounding proof)

max
ω1,...ωT∈∆K

�
T

∑
t=1

∑
i 6=i∗

(
ω1−α

ti
tα

+
ωα

ti
t1−α

)

s.t.
t

∑
t=1

∑
i 6=i∗

∆iωti ≤ �
T

∑
t=1

∑
i 6=i∗

(
ω1−α

ti
tα

+
ωα

ti
t1−α

)

Choosing α
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Figure 1: (Upper bound)/(Lower bound) for different values of α.

• α = 1
2 is superior to EXP3 (α = 1) and LogBarrier

(α = 0)

• Only for α = 1
2 is the learning rate identical for

stochastic and adversarial environments

Empirical evaluation
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Comparison of several bandit algorithms with K = 8 and ∆ = 1/8 under a) stochas-

tic and b) stochastically constrained adversary regime. The left side is in linear scale

and the right is in log-log scale.

Application to utility-based dueling bandits
In dueling bandits, the agent selects two actions It, Jt every step and receives the

result of a “duel”.

There are utilities ut ∈ [0, 1]K associated with all arms and the probability of arm i
winning against arm j is

1+uti−utj
2 . In the stochastic case, ut = u are constant.

The pseudo-regret is defined as

RegT = max
i

E

[
T

∑
t=1

2ui− uIt − uJt

]
.

When using sparring, i.e. running independent algorithms to select It and Jt that

receive I{It/Jtwins} as a loss, then the pseudo regret is the sum of the individual

regrets.

In the stochastic case, the sparring problem is a stochastically constrained adver-

sary, hence our results for MAB apply.

Therefore, we achieve optimality in both worlds:

RegT ≤

O
(√

KT
)

for adversarial environments

O
(

∑i 6=i∗
log(T)
ui∗−ui

)
for stochastic environments

.


