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Summary

– Generative models often aim at minimizing a sim-

ilarity measure between a model and a given data

distribution, in order to learn to sample from the

latter.

– Generative adversarial networks (GANs) have been

especially popular in generative modelling. Ini-

tially GANs suffered from unstable training, re-

sulting from the Jensen-Shannon divergence they

were minimizing.

– The 1-Wasserstein metric, originating from opti-

mal transport, was proposed to be minimized in-

stead, resulting in Wasserstein GANs (WGANs). In

this work, we study how well do different WGAN

implementations actually model the 1-Wasserstein

metric.

Optimal Transport

– Let (X , d) be a polish space, and c : X ×X → R a

cost function, then the optimal transport problem

between two probability measures µ, ν ∈ P(X ) is

OTc(µ, ν) := min
γ

Eγ[c], (1)

where γ is a joint distribution of µ and ν, and

Eµ[ f ] =
∫
X f (x)dµ(x).

– When c = dp and p ≥ 1, we get the p-Wasserstein
metric

Wp(µ, ν) := OTdp
X
(µ, ν)

1
p, (2)

which defines a metric distance function between

probability measures with finite pth moments.

– Call (ϕ, ψ) admissable, if ϕ⊕ ψ ≤ c. Then, the opti-

mal transport problem admits the dual

OTc(µ, ν) = sup
(ϕ,ψ) admissable

{
Eµ[ϕ] + Eν[ψ]

}
, (3)

where the optimal (ϕ, ψ) are called Kantorovich po-
tentials. It can be shown that the optimal ψ satisfies

ψ = ϕc, ϕc = inf
x∈X
{c(x, y)− ϕ(x)}, (4)

where ϕc is called the c-transform of ϕ.

Proposition 1 The c-transform enforces the constraints
in (3), that is, (ϕ, ϕc) ∈ ADM(c) for any ϕ ∈ L1(µ).

Proposition 2 Let ϕ be a 1-Lipschitz function and c = d,
the metric on X . Then, ϕc = −ϕ.

Figure 1: Visualization of the GAN setting. A source distribution µsource

is used to generate low dimensional elements in Rn. These are then
mapped to the data space X with the generator gθ. The generated distri-
bution and the data distribution can then be viewed as elements in the
space of probabilities P(X ) over X . This space is then equipped with
a similarity measure ρω, which typically is computed by maximizing
some quantity with respect to a discriminator ϕω and its parameters ω.
The aim is then to minimize this similarity with respect to the generator
parameter θ.

Wasserstein GANs
– GANs, introduced by Goodfellow et al., aim at

learning to sample from a given target data dis-

tribution yi ∼ µdata by minimizing a similarity

measure ρ (the Jensen-Shannon divergence in the

original paper) between a model, defined by sam-

pling zi ∼ µsource lying in some low-dimensional

space and mapping the points with a generator

xi = gθ(zi), resulting in the measure (gθ)# µsource.

The minimization is carried out with respect to the

generator parameter θ. See Fig. 1.

– The source distribution lives in some low dimen-

sional space, which is then pushed-forward to the

data space by the generator gθ. The low dimen-

sionality is justified by the manifold hypothesis.

– Introduced by Arjovsky et al. in 2017, the WGANs

minimize the 1-Wasserstein distance, that is, ρ =

W1, as follows. Model the Kantorovich potential

as a neural network ϕω with parameters ω, then

by Proposition 2, we can write (3) batch-wise as

min
θ

W1 ((gθ)# µsource, µdata)

≈min
θ

max
ω

{
1
N

N

∑
i=1

ϕω(gθ(zi))−
1
N

N

∑
i=1

ϕω(yi)

}
,

(5)

where yi ∼ µdata and zi ∼ µsource for i = 1, 2, ..., N.

This defines the objective for WGANs.

Remark 1 The main implementational difficulty is ensur-
ing, that ϕω is indeed 1-Lipschitz, so that ϕc = −ϕ. We
could also directly ensure, that (ϕ, ψ) is admissable.

Computing the Wasserstein
metric
– Weight clipping ensures Lipschitzness for ϕω, by

clipping the weights of the neural network to lie

inside some box [−c, c] with c > 0 small. This was

the strategy used by Arjovsky et al (2017).

– Gradient penalty was introduced by Gulrajani

et al. (2017). They start by noticing, that 1-

Lipschitzness over a the support of the joint dis-

tribution of µ and ν implies ‖∇xϕω(x)‖ ≤ 1. This

is then enforced by adding a penalty term to the

objective in (5).

– The c-transform, given in (4), can be computed

batch-wise. This does not yield the exact c-

transform, as this would require a minimization

over the entire support of µ. However, it does pro-

vide an admissable pair. This gives the batch-wise

objective

max
ω

{
1
N

N

∑
i=1

ϕω(xi) +
1
N

N

∑
i=1

ϕ̂c
ω(yi)

}
,

ϕ̂c
ω(yi) = min

j

{
c(xj, yi)− ϕω(xj)

}
.

(6)

Experiments

Figure 2: Estimating the distance between two standard 2-dimensional
Gaussian distributions that have been shifted by ±[1, 1]. The discrimi-
nators are trained for the first 500 mini-batches, after which we assess
how the discriminators are able to estimate the batch-wise distance.

Error MNIST CIFAR10 CelebA
WC 14.98± 0.32 27.26± 0.61 48.65± 1.29
GP 14.89± 0.38 27.14± 0.87 48.00± 2.88

c-transform 0.82± 0.16 1.53± 0.29 2.84± 0.49
Table 1: For each method, the discriminators are trained 20 times for
500 iterations on mini-batches of size 64, after which training is stopped
and the error between the ground truth and the estimate are computed.

Figure 3: Images generated by a GAN with the c-transform. Although
c-transform is far superior at estimating the batch-wise distance, it does
not seem to be favorable for the GAN setting.
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