
Mammography-based Breast Cancer Risk Prediction 

Introduction
Breast cancer is the most commonly diagnosed cancer among women in 
Denmark with around 4,700 new diagnoses each year. 
Correct diagnosis and early detection of cancerous tissue are critical for 
treatment and mortality rates. Consequently, Women in Denmark between 
the age of 50 and 69 are offered breast cancer screening which entails 
biyearly examinations to detect early signs of breast cancer using a low-
dose X-ray image called mammography.

Mammographies contain biomarkers and crucial important information 
about lifetime risk of developing breast cancer such as fibro-glandular 
(dense) tissue volume and spatial distribution of parenchymal tissue also 
referred to as texture. Such information is visually non-trivial and difficult to 
characterize by human readers, but recent developments in machine 
learning allow algorithms to learn such features automatically.

(a) (b)
Fig 1. Example of mammography segmentation masks annotated by radiologist. 
Depicted are (a) breast tissue/pectoral muscle segmentation and (b) dense tissue 

segmentation.

The Percentage mammographic density (PMD) is defined as the 
percentage of breast tissue area that is classified as dense tissue, not 
including the pectoral muscle area.

Examples of texture patterns could be co-occurrence features, coarseness, 
structural features, variations in gray level and so on. These features were 
previously manually designed. Present-day texture risk scoring 
approaches, usually based on deep learning, solve this task by learning 
features of the given domain that contribute optimally to the best 
segregation of cancer cases and non-cancer cases.

Thus primary tasks when estimating risk values entail
i) segmenting pectoral, breast, and background
ii) segmenting dense tissue
iii) texture-based risk score prediction

Personalized risk profiles are created by combining PMD, texture risk 
score, age, hereditary and lifestyle risk factors into a single risk model.

Methods
Breast/Pectoral Segmentation
A 5-layer CNN is used to process mammographic patches classifying the 
center pixel as either breast tissue, pectoral muscle or background when 
trained.

Fig 2. 5-layer CNN. First three layers are trained unsupervised while the last 
layers are trained separately. This final stage of finetuning is task-specific 

(segmentation of risk prediction). Input to the network is multi-scale patches 
samples from a Gaussian scale-space.

The unsupervised part of the network learns features of the image domain 
independent of the specific task at hand and is trained layer-wise using 
autoencoders that encode the input data to a sparse overcomplete 
representation and decodes it again. The loss is computed as the sum of 
the mean squared error and two sparsity terms.

Fig 3. Reconstruction of local receptive field in an overcomplete autoencoder. To 
prevent overfitting population sparsity and lifetime sparsity are applied, limiting 

the number of active units per example and number of examples for which a 
specific unit is active.

The last two layers are trained in a separate supervised stage using the 
breast/pectoral masks as labels. During this stage, the previous layers are 
locked. An entire image is processed by a sliding window, predicting each 
pixel individually.

Dense Tissue Segmentation
For dense tissue segmentation, a modified U-net type network is trained on 
patches extracted from mammographies using weighted cross-entropy loss. 

Fig 4. U-Net used for dense tissue segmentation. The U-net preserves high-
frequency information supported by skip-connections while learning an under 

complete representation of the input images enforced by max-pooling operations.

During prediction of a whole image, overlapping patches are extracted and 
predicted separately and merged with adjacent patches to form a complete 
segmentation mask.

Alternatively, the previously mentioned 5-layer CNN can successfully be 
trained for dense tissue segmentation similarly as breast/pectoral 
segmentation. However, the U-Net is substantially faster when processing 
higher resolution images.

Texture Risk Scoring
For texture risk scoring, the pre-trained 5-layer CNN is used. The weights of 
the final two layers are trained to separate between patches from breasts 
without cancer and patches from with cancer using cross-entropy as loss.
During training, only contralateral mammograms were used to remove signs 
of cancerous tissue or tumors.

Ultimately, the network predicts the probability that a patch comes from a 
breast with cancer-prone mammographic texture/structure.
For a whole image 500 patches are extracted and the final probability is 
computed as the mean of the 500 prediction probabilities.

Data
To train and evaluate segmentation and scoring performance two datasets 
are used. Both have been collected from the Dutch breast cancer screening 
program between 2003 and 2012.

Segmentation dataset
493 mammograms (MLO and CC view) of healthy women annotated by 
Danish radiologist using a polygon tool and Cumulus-thresholding for dense 
tissue segmentation.

Texture risk scoring dataset
1576 mammograms (MLO view only) with 394 cancers, and 1182 healthy 
controls matched on age and acquisition date.

Results
To train and evaluate segmentation and texture risk scoring performance two 
datasets are used. Both have been collected from the Dutch breast cancer 
screening program between 2003 and 2012.

Segmentation Tasks

Texture Risk Scoring and Validation in cohort study
Texture risk scoring performance is measured in by the area under the ROC-
curve (AUC) and validated using 5-fold cross validation. 
Furthermore, the texture scoring have been validated in a separate Dutch 
screening cohort study using 51400 mammograms.
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Mammographies contain non-trivial information related to the lifetime risk of breast cancer including mammographic density and 
texture patterns. Deep learning methods enable precise and quick quantization of such risk factors and can improve breast cancer
risk predictions. Due to the easy collection of large screening cohorts, hierarchical features of mammography can be learned in an 
unsupervised fashion using autoencoders. 
Generative adversarial networks have been shown to improve medical image tasks such as data augmentation, image 
segmentation in several image medical modalities. Here, a strategy to incorporate generative models into breast cancer risk 
prediction is outlined.

U N I V E R S I T Y  O F  C O P E N H A G E N
F A C U L T Y  O F  S C I E N C E

Future work
Improving segmentation performance with cGAN
A conditional generative adversarial network (cGAN) consists of two sub-
networks. The objective of the generator network is to learn a segmentation 
mask by approximating the ground-truth mask while producing a 
segmentation mask that is indistinguishable from the ground-truth mas as 
seen by the discriminator network. The objective of the discriminator is to 
learn the classification of a mask being a generated mask or real mask 
(sampled from ground truth domain).

Fig 6. Forward pass through a conditional generative adversarial network. I is a 
mammographic patch M is the ground-truth segmentation mask and M´ is the 

generated segmentation mask.

Augmenting Cancer Cases Using GAN
In cohort breast screening datasets controls are often oversampled 
comparing to cancer cases. Furthermore, gathering cancer labels for large 
datasets is often difficult. Augmenting cancer cases might be feasible in terms 
of producing better risk scores.

Fig 6. Forward pass through a generative adversarial network. I is a mammography, 
I´ is synthetic mammography, and Z is a random variable vector.

Conclusion
Here is presented an unsupervised feature learning method for 
breast/pectoral segmentation and automatic texture scoring and using a 
supervised approach to segment dense tissues in mammographies.

The results suggest that breast/pectoral muscle segmentation yield overall 
high DICE similarity, that is satisfactory for calculating PMD. 

The results achieved in dense tissue scoring highly correlates with radiologist 
annotated segmentation masks, yet the DICE similarity suggests that the 
segmentation performance could be improved significantly.

Texture risk scores estimated with a 5-layer CNN was shown to be related to 
breast cancer risk. This automatic scoring was validated on a large screening 
cohort with the same results.

Finally, several approaches of how to improve breast cancer risk modeling 
using generative models have been proposed including using a cGAN for 
improving segmentation and a GAN for augmenting dataset with more cancer 
cases. These propositions will be subject for experimentation in the near 
future.
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Breast/pectoral 
class

DICE

Background 0.99 ± 0.002
Pectoral muscle 0.94 ± 0.069
Breast tissue 0.99 ± 0.008

Dense class DICE

Non-dense 0.63 ± 0.190

Dense tissue 0.95 ± 0.080

Dataset AUC
Texture risk scoring dataset (5-fold CV) 0.61 (0.57-0.66)

Screening cohort 0.61 (0.57–0.64) 

Fig 5. High and low texture and 
high and low density 
mammogram combinations.

Top row:
High PMD (14%) and high 
texture (0.58). High PMD (19%) 
and low texture (0.47) scores 

Bottom row:
Low PMD (5%) and high 
texture (0.51) and low PMD 
(4%) and low texture scores 
(0.44)

Dataset AUC

Pearson correlation between PMD 
estimated with CNN and radiologist

0.93 (0.92 – 0.94)

PMD cancer cases 0.19 ± 0.11

PMD controls 0.15 ± 0.11

AUC using PMD as biomarker for cancer 0.59 (0.56 – 0.62)


