
Introduction to

Generative Adversarial
Networks

Summer School on Generative Models

Morten Hannemose, mohan@dtu.dk

August 13th, 2019

mailto:mohan@dtu.dk

Program for the day

• Now: Lecture

• Lunch

• 13:00 PyTorch Concepts (10 minutes)

• Exercise

• 15:15 CycleGAN walkthrough

• Resume exercise

• Dinner

Outline – What you’re going to see

• Introduction

• Applications

• How to train a GAN?

• Variations of GANs

• Exercise time!

Who am I

• Morten Hannemose

• PhD student
• Image Analysis and Computer Graphics Section

• Technical University of Denmark

• Work mostly with:
• Image-based optimization

• 3D reconstruction

• Deep learning

Conceptual example

What?

• Introduced in 2014 by Ian Goodfellow

• Generator learns a mapping from one probability distribution to
another
• Commonly from a low dimensional Gaussian distribution to the distribution of

images you train it on

Examples

• These images are generated from random noise (and conditioned to
be a specific class)
• BigGAN [2018]

Examples

• 4.5 years of GAN progress on face generation

Source: https://twitter.com/goodfellow_ian/status/1084973596236144640/

https://twitter.com/goodfellow_ian/status/1084973596236144640/

Which face is real?

• Cool website
• http://www.whichfaceisreal.com

http://www.whichfaceisreal.com/

Why?

• Data without labels is abundant – we want to use it

• Being able to learn the distribution of your data is useful

• Many applications

Outputting images

• You want the network to output an image
• L2 loss (mean squared error) gives blurry images

• L1 loss (mean absolute error) gives sharper images

• Both are very sensitive to pixel changes that don’t mean anything
perceptually

Applications

• Super resolution

• Colorization

• Inpainting

• Domain-transfer

• Generating additional training data

• And more (on Thursday)

Generating additional training data

• Making rendered images look like real images
• But because they are rendered, we have ground truth labels

[2016] Ashish Shrivastava et al. Learning from Simulated and Unsupervised Images through Adversarial Training
https://arxiv.org/abs/1612.07828

https://arxiv.org/abs/1612.07828

Super
resolution
example
(ESRGAN)

Conceptual recap

How?

• Fully connected

• Many different losses possible

• Train generator and discriminator in an alternating fashion
• Train discriminator for k iterations (can be k=2) (or k=1 and higher LR for D)
• Then train generator once
• Repeat

• Adam 𝛽1 = 0.5, learning rate = 0.0002
• Default parameter of 𝛽1 = 0.9 doesn’t work well (sometimes)

• Shorthand:
• G: Generator
• D: Discriminator

How to do GANs?

• Training GANs is still very hard
• Many problems exist

• Non-convergence
• The models never converge and worse they become unstable.

• Mode collapse
• The generator produces a single or limited modes.

• i.e. the images are not as diverse as the true data.

• Many tricks exist

2014 - GAN Goodfellow et al. Generative Adversarial Nets

• Original GAN paper

• Uses only fully connected layers
• Limited to generating small images

• Discriminator
• Binary cross entropy loss

GANs
this is a joke slide

LeakyReLU
Often used with 𝛼 = 0.2

Convolution Recap – Blue is input

padding=1, stride=1 padding=1, stride=2padding=0, stride=1

Transposed Convolution Recap – Blue is input

padding=1, stride=1 padding=1, stride=2padding=0, stride=1

Also known as: fractionally strided convolution/deconvolution

2015 - DCGAN Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

• How to do GANs with convolutional layers?
• Replace any pooling layers with strided convolutions (discriminator) and

transposed-strided convolutions (generator)

• Use batchnorm in both the generator and the discriminator

• Use LeakyReLU activation in the discriminator for all layers

• Use ReLU activation in generator for all layers except for the output, which
uses Tanh
• Later on people recommend using LeakyReLU in both G and D

General tips

Avoid sparse gradients (max pool, ReLU)

Use higher learning rate for discriminator

(Two Time-Scale Update Rule)

Don't mix real and
generated content in
batches

Construct separate
batches for real and
generated content
respectively

Don't assume you have
a good training
schedule

Visualize generated
samples periodically.

GAN variations

Vanilla GAN

• GANs are a two player game
• Which game do they play?

• G tries to minimize

• D tries to maximize

• Original loss:

For G

WGAN

• WGAN
• Optimize approximation of Wasserstein-1 distance

• Discriminator must be Lipschitz continuous
• Otherwise it can push them arbitrarily far apart without becoming more discriminative

• Introduce weight clipping in discriminator to enforce Lipschitz continuous
• “Weight clipping is a clearly terrible way to enforce a Lipschitz constraint”

-Original WGAN paper

• WGAN-GP
• Enforce Lipschitz continuous D by penalizing on norm of gradients in D

Arjovsky et al. Wasserstein GAN
Gulrajani et al. Improved Training of Wasserstein GANs

LSGAN Mao et al. Least Squares Generative Adversarial Networks

• Uses a least square loss instead

• Simple to implement

GAN-SN

• Spectral Normalization
• Normalization to prevent vanishing or exploding gradients

• Enforces Lipschitz continuity in computationally efficient way

• Normalize each layer by it’s spectral norm
• For a fully connected layer the spectral norm is the largest eigenvalue of the

weight matrix

• Computed efficiently with the power method

• Originally applied only to D but works well for G and D

Miyato et al. Spectral Normalization for Generative Adversarial Networks

Important note

• You should not have an activation function on the last layer of your
discriminator when using WGAN or LSGAN
• The discriminator should be able to output any value

Latent space interpolations

• Showing examples generated by moving between two datapoints in
the latent space

cGAN Mirza et al. Conditional Generative Adversarial Nets

• Conditional GAN

• Conditions the generated image
on additional information (y)
• e.g. class information

• Can also condition on image

Abbreviations

• GAN: Generative Adversarial Network

• DCGAN: Deep Convolutional Generative Adversarial Network

• CGAN: Conditional Generative Adversarial Network

• WGAN: Wasserstein Generative Adversarial Network
• WGAN-GP: Wasserstein GAN – Gradient Penalty

• Not covered here:

• CoGAN: Coupled GAN

• SAGAN: Self-Attention Generative Adversarial Networks

• ProGAN: Progressive Growing of GANs

Well known networks

• Later today:

• Pix2pix

• CycleGAN

• Not covered here (but you have seen examples):

• SRGAN
• ESRGAN

• BigGAN

• StyleGAN

StyleGAN
example

Karras et al. A Style-Based
Generator Architecture for
Generative Adversarial
Networks

Thanks for listening

• A generator learns a mapping from one probability distribution to
another
• Often used to output images

• Training GANs is hard
• Many different tricks have been employed

